We study the asymptotic properties of the multivariate spike-and-slab LASSO (mSSL) proposed by Deshpande et al.(2019) for simultaneous variable and covariance selection. Specifically, we consider the sparse multivariate linear regression problem where $q$ correlated responses are regressed onto $p$ covariates. In this problem, the goal is to estimate a sparse matrix $B$ of marginal covariate effects and a sparse precision matrix $\Omega$, which captures the residual conditional dependence structure of the outcomes. The mSSL works by placing continuous spike and slab priors on all the entries of $B$ and on all the off-diagonal elements in the lower-triangle of $\Omega$. Under mild assumptions, we establish the posterior contraction rate for the slightly modified mSSL posterior in the asymptotic regime where both $p$ and $q$ diverge with $n.$ Our results imply that a slightly modified version of Deshpande et al.~(2019)'s mSSL procedure is asymptotically consistent.
翻译:我们研究的是Deshpande 等人( 2019年) 提出的用于同时变量和共变量选择的多变量钉钉和悬浮 LASSO (mSSL) 的微变线性回归特性。 具体地说, 我们考虑的是稀疏的多变量线性回归问题, 美元的相关反应被递退到 $p美元 共变量中。 在这个问题上, 我们的目标是估算一个稀疏的矩阵 $B 的边际共变量效应和一个稀薄的精确矩阵 $\ Omega$, 以记录结果的剩余有条件依赖性结构。 MSSL 的计算结果显示, 在$\\ Omega 的所有条目和所有非对角元素上, $\ Omega 美元上, 都设置了连续的钉钉和粘附前缀。 在轻度假设下, 我们设定了微调的 mSSL 后表收缩率, 在亚州制度下, 即 $ p美元 和 $ 美元 美元 。 我们的结果表明, Deshpand et et al. ( 2019 ) MSL 程序 。