A burgeoning line of research has developed deep neural networks capable of approximating the solutions to high dimensional PDEs, opening related lines of theoretical inquiry focused on explaining how it is that these models appear to evade the curse of dimensionality. However, most theoretical analyses thus far have been limited to linear PDEs. In this work, we take a step towards studying the representational power of neural networks for approximating solutions to nonlinear PDEs. We focus on a class of PDEs known as \emph{nonlinear elliptic variational PDEs}, whose solutions minimize an \emph{Euler-Lagrange} energy functional $\mathcal{E}(u) = \int_\Omega L(\nabla u) dx$. We show that if composing a function with Barron norm $b$ with $L$ produces a function of Barron norm at most $B_L b^p$, the solution to the PDE can be $\epsilon$-approximated in the $L^2$ sense by a function with Barron norm $O\left(\left(dB_L\right)^{p^{\log(1/\epsilon)}}\right)$. By a classical result due to Barron [1993], this correspondingly bounds the size of a 2-layer neural network needed to approximate the solution. Treating $p, \epsilon, B_L$ as constants, this quantity is polynomial in dimension, thus showing neural networks can evade the curse of dimensionality. Our proof technique involves neurally simulating (preconditioned) gradient in an appropriate Hilbert space, which converges exponentially fast to the solution of the PDE, and such that we can bound the increase of the Barron norm at each iterate. Our results subsume and substantially generalize analogous prior results for linear elliptic PDEs.
翻译:快速研究线已发展出深度神经网络, 能够接近高维 PDE 的解决方案, 开启相关的理论调查线, 重点是解释这些模型似乎是如何逃避维度的诅咒。 然而, 迄今大多数理论分析都局限于线性 PDE 。 在此工作中, 我们迈出一步, 研究神经网络的表达能力, 以接近非线性 PDE 的解决方案。 我们关注的是一类PDE, 称为 entireph{ nonlineal liptial litial extal PDE}, 其解决方案将 emph{Euler- Lagrange} 能源功能看似逃避维度的诅咒。 然而, 迄今大多数理论分析都局限于线性 PDE 代表神经网络的表达能力, 以 $ral ral ral_ rental commal commal commal commal commal ral_ ralalal_ ruilal roupal_ max iral lex lexnal_ pal_ lexnal_ pal_ pal_ pal_ pal_ pal_ pal_ rodeal_ pal_ pal_ pal_ pal_ lemental_ lemental_ lemental_ lemental_ lemental_ lexnal_ lemental_ legal_ lemental_ lemental_ lemental_ lemental_ legal lemental lemental lemental lemental lemental_ lemental lemental_ lemental_ lex lex lemental_ lex lemental lex lex lex lex le) le) lemental lemental moal moal lemental lemental lemental lemental lemental moal mo moal mo moal mo mo mo moal mo lemental moal lemental moal moal moal motal leal lemental