We present the DLR Planetary Stereo, Solid-State LiDAR, Inertial (S3LI) dataset, recorded on Mt. Etna, Sicily, an environment analogous to the Moon and Mars, using a hand-held sensor suite with attributes suitable for implementation on a space-like mobile rover. The environment is characterized by challenging conditions regarding both the visual and structural appearance: severe visual aliasing poses significant limitations to the ability of visual SLAM systems to perform place recognition, while the absence of outstanding structural details, joined with the limited Field-of-View of the utilized Solid-State LiDAR sensor, challenges traditional LiDAR SLAM for the task of pose estimation using point clouds alone. With this data, that covers more than 4 kilometers of travel on soft volcanic slopes, we aim to: 1) provide a tool to expose limitations of state-of-the-art SLAM systems with respect to environments, which are not present in widely available datasets and 2) motivate the development of novel localization and mapping approaches, that rely efficiently on the complementary capabilities of the two sensors. The dataset is accessible at the following url: https://rmc.dlr.de/s3li_dataset
翻译:我们展示了DLR行星立体静态、固态激光雷达、惯性(S3LI)数据集,该数据集记录在与月球和火星相似的环境西西里岛埃特纳山上,使用的是一个手提式传感器套装,具有适合在像空间的移动越野上执行的特性,环境的特点是视觉和结构外观具有挑战性条件:严重视觉化外观对视觉SLAM系统进行地点识别的能力造成了严重限制,而缺少突出的结构细节,同时对使用过的Solid- State LiDAR传感器进行有限的实地观察,传统LIDAR SLAM对仅使用点云进行姿势估测的任务提出了挑战。有了这一数据,我们的目标是:(1) 提供一种工具,暴露在环境方面最先进的SLAM系统受到的限制,而这些系统并不存在于广泛可用的数据集中;(2) 激励开发新的本地化和绘图方法,这些方法有效地依赖两个传感器的补充能力。