Two-sample hypothesis testing is a fundamental problem with various applications, which faces new challenges in the high-dimensional context. To mitigate the issue of the curse of dimensionality, high-dimensional data are typically assumed to lie on a low-dimensional manifold. To incorporate geometric informtion in the data, we propose to apply the Delaunay triangulation and develop the Delaunay weight to measure the geometric proximity among data points. In contrast to existing similarity measures that only utilize pairwise distances, the Delaunay weight can take both the distance and direction information into account. A detailed computation procedure to approximate the Delaunay weight for the unknown manifold is developed. We further propose a novel nonparametric test statistic using the Delaunay weight matrix to test whether the underlying distributions of two samples are the same or not. Applied on simulated data, the new test exhibits substantial power gain in detecting differences in principal directions between distributions. The proposed test also shows great power on a real dataset of human face images.
翻译:暂无翻译