Seismic wave propagation forms the basis for most aspects of seismological research, yet solving the wave equation is a major computational burden that inhibits the progress of research. This is exacerbated by the fact that new simulations must be performed when the velocity structure or source location is perturbed. Here, we explore a prototype framework for learning general solutions using a recently developed machine learning paradigm called Neural Operator. A trained Neural Operator can compute a solution in negligible time for any velocity structure or source location. We develop a scheme to train Neural Operators on an ensemble of simulations performed with random velocity models and source locations. As Neural Operators are grid-free, it is possible to evaluate solutions on higher resolution velocity models than trained on, providing additional computational efficiency. We illustrate the method with the 2D acoustic wave equation and demonstrate the method's applicability to seismic tomography, using reverse mode automatic differentiation to compute gradients of the wavefield with respect to the velocity structure. The developed procedure is nearly an order of magnitude faster than using conventional numerical methods for full waveform inversion.
翻译:地震波的传播构成了地震学研究大部分方面的基础,然而,解决波形是阻碍研究进展的一个主要计算负担。这一事实使情况更加恶化,因为当速度结构或源位置受到扰动时,必须进行新的模拟。在这里,我们探索一个利用最近开发的机器学习范式“神经操作员”学习一般解决办法的原型框架。训练有素的神经操作员可以在可忽略的时间为任何速度结构或源位置计算出一种解决办法。我们开发了一个计划,对神经操作员进行用随机速度模型和源位置进行的各种模拟的集合式培训。由于神经操作员没有电网,因此有可能对高于所培训的分辨率速度模型的解决方案进行评估,提供额外的计算效率。我们用2D声波方程式来说明该方法对地震摄影的适用性,使用反向模式自动区分,计算波场的梯度和速度结构。所开发的程序比使用常规数字方法进行全波转换的速度要快得多。