In this paper, we first establish a new fractional magnetohydrodynamic (MHD) coupled flow and heat transfer model for a generalized second-grade fluid. This coupled model consists of a fractional momentum equation and a heat conduction equation with a generalized form of Fourier law. The second-order fractional backward difference formula is applied to the temporal discretization and the Legendre spectral method is used for the spatial discretization. The fully discrete scheme is proved to be stable and convergent with an accuracy of $O(\tau^2+N^{-r})$, where $\tau$ is the time step size and $N$ is the polynomial degree. To reduce the memory requirements and computational cost, a fast method is developed, which is based on a globally uniform approximation of the trapezoidal rule for integrals on the real line. And the strict convergence of the numerical scheme with this fast method is proved. We present the results of several numerical experiments to verify the effectiveness of the proposed method. Finally, we simulate the unsteady fractional MHD flow and heat transfer of the generalized second-grade fluid through a porous medium. The effects of the relevant parameters on the velocity and temperature are presented and analyzed in detail.
翻译:在本文中, 我们首先为普通二等液体建立一个新的微粒磁流动力( MHD) 伴流和热传导模型( MHD) 。 这个模型由分动动方程式和热导流方程式组成, 具有通俗形式的 Fourier 法。 第二阶分向后偏差公式适用于时间离散, 而传球光谱法则用于空间离散。 完全离散的系统被证明是稳定的, 并具有精确度为O( tau2+N ⁇ - ⁇ - r} $( $) 和 美元( $) 的汇流和热传输模型。 为了降低记忆要求和计算成本, 开发了一个快速的方法。 该方法的基础是对实际线上的集成集成物进行全球统一的集成分流和热转换规则的近似近似近似近度。 我们展示了数项实验的结果, 以核实拟议方法的有效性。 最后, 我们模拟了对普遍二等级液体的分数流和热转移的多度度度, 通过一个可控的中层和详细度, 分析的温度的影响。 。