We propose an algorithm for next query recommendation in interactive data exploration settings, like knowledge discovery for information gathering. The state-of-the-art query recommendation algorithms are based on sequence-to-sequence learning approaches that exploit historical interaction data. Due to the supervision involved in the learning process, such approaches fail to adapt to immediate user feedback. We propose to augment the transformer-based causal language models for query recommendations to adapt to the immediate user feedback using multi-armed bandit (MAB) framework. We conduct a large-scale experimental study using log files from a popular online literature discovery service and demonstrate that our algorithm improves the per-round regret substantially, with respect to the state-of-the-art transformer-based query recommendation models, which do not make use of immediate user feedback. Our data model and source code are available at https://github.com/shampp/exp3_ss
翻译:暂无翻译