Maximum Mean Discrepancy (MMD) is a probability metric that has found numerous applications in machine learning. In this work, we focus on its application in generative models, including the minimum MMD estimator, Generative Moment Matching Network (GMMN), and Generative Adversarial Network (GAN). In these cases, MMD is part of an objective function in a minimization or min-max optimization problem. Even if its empirical performance is competitive, the consistency and convergence rate analysis of the corresponding MMD-based estimators has yet to be carried out. We propose a uniform concentration inequality for a class of Maximum Mean Discrepancy (MMD)-based estimators, that is, a maximum deviation bound of empirical MMD values over a collection of generated distributions and adversarially learned kernels. Here, our inequality serves as an efficient tool in the theoretical analysis for MMD-based generative models. As elaborating examples, we applied our main result to provide the generalization error bounds for the MMD-based estimators in the context of the minimum MMD estimator and MMD GAN.
翻译:暂无翻译