We propose the Truncated Nonsmooth Newton Multigrid Method (TNNMG) as a solver for the spatial problems of the small-strain brittle-fracture phase-field equations. TNNMG is a nonsmooth multigrid method that can solve biconvex, block-separably nonsmooth minimization problems with linear time complexity. It exploits the variational structure inherent in the problem, and handles the pointwise irreversibility constraint on the damage variable directly, without regularization or the introduction of a local history field. In the paper we introduce the method and show how it can be applied to several established models of phase-field brittle fracture. We then prove convergence of the solver to a solution of the nonsmooth Euler--Lagrange equations of the spatial problem for any load and initial iterate. On the way, we show several crucial convexity and regularity properties of the models considered here. Numerical comparisons to an operator-splitting algorithm show a considerable speed increase, without loss of robustness.
翻译:我们建议使用脱线的Nonsmooth Newton Multigrid 方法(TNNMG ), 将其作为小片丁堡断裂阶段方程式空间问题的解决方案。 TNNMG 是一种非脱线的多格方法,可以解决双convex, 块分不均的最小化问题, 且具有线性时间复杂性。 它利用了问题固有的变异结构, 并直接处理对损坏变量的点向不可逆转性限制, 没有正规化或引入本地历史字段 。 在文件中, 我们引入了该方法, 并展示了该方法如何应用到几个已建立的相片场裂裂变模型 。 我们随后证明解锁器与任何负载和初始外延的空间问题的非moth Euler- Lagrange 方程式的解决方案趋同。 在路上, 我们展示了这里所考虑的模型的若干关键调和规律性特性。 与操作者分解算法的数值比较显示速度大幅加快, 没有失去坚固性 。</s>