Monitoring coral reefs using underwater vehicles increases the range of marine surveys and availability of historical ecological data by collecting significant quantities of images. Analysis of this imagery can be automated using a model trained to perform semantic segmentation, however it is too costly and time-consuming to densely label images for training supervised models. In this letter, we leverage photo-quadrat imagery labeled by ecologists with sparse point labels. We propose a point label aware method for propagating labels within superpixel regions to obtain augmented ground truth for training a semantic segmentation model. Our point label aware superpixel method utilizes the sparse point labels, and clusters pixels using learned features to accurately generate single-species segments in cluttered, complex coral images. Our method outperforms prior methods on the UCSD Mosaics dataset by 3.62% for pixel accuracy and 8.35% for mean IoU for the label propagation task, while reducing computation time reported by previous approaches by 76%. We train a DeepLabv3+ architecture and outperform state-of-the-art for semantic segmentation by 2.91% for pixel accuracy and 9.65% for mean IoU on the UCSD Mosaics dataset and by 4.19% for pixel accuracy and 14.32% mean IoU for the Eilat dataset.
翻译:使用水下潜水器监测珊瑚礁,通过收集大量图像,扩大了海洋勘测范围和历史生态数据的提供范围,通过收集大量图像增加了历史生态数据的可用性。 利用经过训练的用于进行语解分解的模型,可以自动分析这种图像,但对于培训受监督的模型而言,这种模型太昂贵、太费时,无法进行密集的标签。 在这封信中,我们利用由生态学家贴有稀疏点标签的光水成像仪所标贴的相光水成像仪。 我们提出了一个在超级像素区域传播标签的点标签有意识的方法,以便为培训一个语义分解模型,从而获得更多的地面真相。 我们用点标签识别超级像素的方法利用了稀疏点标签, 和组群象素组利用了学习的特性, 准确生成了被污染的、 复杂珊瑚图案的单种图谱部分。 我们的方法比UCSDMY数据的先前方法高出3.62%, 和8.35%,同时将先前报告的计算时间减少76%。 我们训练了一个深Lab3+结构和超状态的Umusion-lix数据精确度I-lix数据的精确度为2.91和Ummmanix 4%。