Recent advances in vision transformers (ViTs) have achieved great performance in visual recognition tasks. Convolutional neural networks (CNNs) exploit spatial inductive bias to learn visual representations, but these networks are spatially local. ViTs can learn global representations with their self-attention mechanism, but they are usually heavy-weight and unsuitable for mobile devices. In this paper, we propose cross feature attention (XFA) to bring down computation cost for transformers, and combine efficient mobile CNNs to form a novel efficient light-weight CNN-ViT hybrid model, XFormer, which can serve as a general-purpose backbone to learn both global and local representation. Experimental results show that XFormer outperforms numerous CNN and ViT-based models across different tasks and datasets. On ImageNet1K dataset, XFormer achieves top-1 accuracy of 78.5% with 5.5 million parameters, which is 2.2% and 6.3% more accurate than EfficientNet-B0 (CNN-based) and DeiT (ViT-based) for similar number of parameters. Our model also performs well when transferring to object detection and semantic segmentation tasks. On MS COCO dataset, XFormer exceeds MobileNetV2 by 10.5 AP (22.7 -> 33.2 AP) in YOLOv3 framework with only 6.3M parameters and 3.8G FLOPs. On Cityscapes dataset, with only a simple all-MLP decoder, XFormer achieves mIoU of 78.5 and FPS of 15.3, surpassing state-of-the-art lightweight segmentation networks.


翻译:视觉变压器(ViTs)的近期进步在视觉识别任务中取得了巨大成绩。 革命神经网络(CNNNs)利用空间感化偏差来学习视觉表现, 但是这些网络在空间上是局部的。 ViTs可以用自己的自我注意机制学习全球表现方式, 但是它们通常重量过重, 不适合移动设备。 在本文中, 我们建议交叉关注( XFA) 降低变压器的计算成本, 并将高效的移动CNN- CNN- VIT混合模型( XFormer) 组合起来, 以形成一个新的高效的轻巧的轻巧的CNN- PN- ViT混合模型( XFormer), 它可以作为学习全球和本地代表的通用主干线。 实验结果显示, XFFormer 超越了许多CNN 和VT 的模型, 跨越了不同任务和数据集。 在图像Net1K 数据集中, XFFNPS2 的上, 最高一级精确度为2.2% 和6.VPSeal- seral- CO3 数据框架。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月9日
Arxiv
0+阅读 · 2022年9月7日
Arxiv
32+阅读 · 2022年2月15日
Arxiv
17+阅读 · 2021年3月29日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员