In this paper we propose a new operator splitting algorithm for distributed Nash equilibrium seeking under stochastic uncertainty, featuring relaxation and inertial effects. Our work is inspired by recent deterministic operator splitting methods, designed for solving structured monotone inclusion problems. The algorithm is derived from a forward-backward-forward scheme for solving structured monotone inclusion problems featuring a Lipschitz continuous and monotone game operator. To the best of our knowledge, this is the first distributed (generalized) Nash equilibrium seeking algorithm featuring acceleration techniques in stochastic Nash games without assuming cocoercivity. Numerical examples illustrate the effect of inertia and relaxation on the performance of our proposed algorithm.
翻译:在本文中,我们建议为分布式纳什均衡提供一个新的操作员分离算法,在随机不确定性下寻求分布式纳什均衡,其特点是放松和惯性效应。我们的工作受到最近决定式操作员分裂方法的启发,该算法旨在解决结构化的单调包容问题。该算法来自一个前向前向前向式计划,旨在解决结构化的单调包容问题,由利普施茨连续和单调游戏操作员组成。据我们所知,这是第一个(通用的)分配式纳什平衡,寻求在不假定共振纳什游戏中加速技术的计算法。数字示例说明了惰性和放松对我们拟议算法的绩效的影响。