This paper proposes two novel approaches to perform more suitable sensitivity analyses for discrete topology optimization methods. To properly support them, we introduce a more formal description of the Bi-directional Evolutionary Structural Optimization (BESO) method, in which the sensitivity analysis is based on finite variations of the objective function. The proposed approaches are compared to a naive strategy; to the conventional strategy, referred to as First-Order Continuous Interpolation (FOCI) approach; and to a strategy previously developed by other researchers, referred to as High-Order Continuous Interpolation (HOCI) approach. The novel Woodbury approach provides exact sensitivity values and is a better alternative to HOCI. Although HOCI and Woodbury approaches may be computationally prohibitive, they provide useful expressions for a better understanding of the problem. The novel Conjugate Gradient Method (CGM) approach provides sensitivity values with arbitrary precision and is computationally viable for a small number of steps. The CGM approach is a better alternative to FOCI since, for appropriate initial conditions, it is always more accurate than the conventional strategy. The standard compliance minimization problem with volume constraint is considered to illustrate the methodology. Numerical examples are presented together with a broad discussion about BESO-type methods.


翻译:本文提出两种新的方法,以对离散地形优化方法进行更合适的敏感性分析。为了适当支持这些方法,我们更正式地描述双向进化结构优化方法(BESO),该方法的敏感性分析以目标功能的有限变化为基础。拟议方法与一种天真的战略进行比较;传统战略,称为“一阶连续国际刑警组织(FOCI)”方法;以及以前由其他研究人员制定的一项战略,称为“高端连续国际刑警组织(HOCI)”方法。新颖的Woodbury方法提供了精确的敏感性值,是HOCI的更好替代方法。虽然HOCI和Woodbury方法在计算上可能令人望而不可及,但它们为更好地理解问题提供了有用的表达方式。新颖的Conjugate梯(CGM)方法提供了任意精确的灵敏度值,在计算上对少量步骤是可行的。CGM方法比FOCI更好的替代方法,因为对于适当的初始条件来说,它总是比常规战略更准确。关于数量限制的标准遵守问题,与量限制问题的标准遵守问题被视为说明方法的广泛例子。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
资源|斯坦福课程:深度学习理论!
全球人工智能
16+阅读 · 2017年11月9日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Adversarial Graph Disentanglement
Arxiv
0+阅读 · 2021年7月6日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2017年3月8日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
资源|斯坦福课程:深度学习理论!
全球人工智能
16+阅读 · 2017年11月9日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员