Computing a Single-Linkage Dendrogram (SLD) is a key step in the classic single-linkage hierarchical clustering algorithm. Given an input edge-weighted tree $T$, the SLD of $T$ is a binary dendrogram that summarizes the $n-1$ clusterings obtained by contracting the edges of $T$ in order of weight. Existing algorithms for computing the SLD all require $\Omega(n\log n)$ work where $n = |T|$. Furthermore, to the best of our knowledge no prior work provides a parallel algorithm obtaining non-trivial speedup for this problem. In this paper, we design faster parallel algorithms for computing SLDs both in theory and in practice based on new structural results about SLDs. In particular, we obtain a deterministic output-sensitive parallel algorithm based on parallel tree contraction that requires $O(n \log h)$ work and $O(\log^2 n \log^2 h)$ depth, where $h$ is the height of the output SLD. We also give a deterministic bottom-up algorithm for the problem inspired by the nearest-neighbor chain algorithm for hierarchical agglomerative clustering, and show that it achieves $O(n\log h)$ work and $O(h \log n)$ depth. Our results are based on a novel divide-and-conquer framework for building SLDs, inspired by divide-and-conquer algorithms for Cartesian trees. Our new algorithms can quickly compute the SLD on billion-scale trees, and obtain up to 150x speedup over the highly-efficient Union-Find algorithm typically used to compute SLDs in practice.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员