Evolutionary algorithms (EAs) have found many successful real-world applications, where the optimization problems are often subject to a wide range of uncertainties. To understand the practical behaviors of EAs theoretically, there are a series of efforts devoted to analyzing the running time of EAs for optimization under uncertainties. Existing studies mainly focus on noisy and dynamic optimization, while another common type of uncertain optimization, i.e., robust optimization, has been rarely touched. In this paper, we analyze the expected running time of the (1+1)-EA solving robust linear optimization problems (i.e., linear problems under robust scenarios) with a cardinality constraint $k$. Two common robust scenarios, i.e., deletion-robust and worst-case, are considered. Particularly, we derive tight ranges of the robust parameter $d$ or budget $k$ allowing the (1+1)-EA to find an optimal solution in polynomial running time, which disclose the potential of EAs for robust optimization.
翻译:进化算法(EAs)发现许多成功的现实世界应用,优化问题往往受到多种不确定因素的影响。为了从理论上理解EAs的实际行为,需要做出一系列努力来分析在不确定因素下优化EAs的运行时间。现有的研究主要侧重于噪音和动态优化,而另一种常见的不确定优化方式,即强力优化,却很少被触及。在本文中,我们分析了(1+1)-EA解决强势线性优化问题的预期运行时间(即强势情景下的线性问题),其中主要限制是$k$。我们考虑了两种共同的稳健情景,即删除-robust和最坏的情景。特别是,我们得出强势参数$d$或预算$k$的紧凑范围,允许(1+1)-EA在多边运行时间找到最佳解决方案,这揭示了EAs进行稳健优化的潜力。