Since proposed in [X. Zhang and C.-W. Shu, J. Comput. Phys., 229: 3091--3120, 2010], the Zhang--Shu framework has attracted extensive attention and motivated many bound-preserving (BP) high-order discontinuous Galerkin and finite volume schemes for various hyperbolic equations. A key ingredient in the framework is the decomposition of the cell averages of the numerical solution into a convex combination of the solution values at certain quadrature points, which helps to rewrite high-order schemes as convex combinations of formally first-order schemes. The classic convex decomposition originally proposed by Zhang and Shu has been widely used over the past decade. It was verified, only for the 1D quadratic and cubic polynomial spaces, that the classic decomposition is optimal in the sense of achieving the mildest BP CFL condition. Yet, it remained unclear whether the classic decomposition is optimal in multiple dimensions. In this paper, we find that the classic multidimensional decomposition based on the tensor product of Gauss--Lobatto and Gauss quadratures is generally not optimal, and we discover a novel alternative decomposition for the 2D and 3D polynomial spaces of total degree up to 2 and 3, respectively, on Cartesian meshes. Our new decomposition allows a larger BP time step-size than the classic one, and moreover, it is rigorously proved to be optimal to attain the mildest BP CFL condition, yet requires much fewer nodes. The discovery of such an optimal convex decomposition is highly nontrivial yet meaningful, as it may lead to an improvement of high-order BP schemes for a large class of hyperbolic or convection-dominated equations, at the cost of only a slight and local modification to the implementation code. Several numerical examples are provided to further validate the advantages of using our optimal decomposition over the classic one in terms of efficiency.


翻译:自[X.Zhang and C.-W. Shu, J. Comput. Phys., 229: 3091- 3120, 2010] 提出[X. Zhang- Shu, 3091- 3120, 2010] 以来,张- Shu 框架引起了广泛的关注,促使许多约束性保存(BP) 高端不连续加热金和各种双曲方程式的有限体积计划。 框架中的一个关键要素是将数字解决方案的单元格平均值分解成在某些周期性Ploral- Ploral- Ploration点的解决方案组合。 这有助于将高端计划改成正式一级初等级方案的更低级组合。 张和舒最初提出的典型的 convex分解法在过去十年中被广泛使用。 仅对于1D 度和立方言方言方和立言方方方方程式的空间来说, 典型的分解是最佳的。 然而, 典型的高度分解法在多个层面是最佳的分解法, 。 在本文中, 最优级的分解到最优级的分解或更低级的分解法的分解是比级的分级的分解,, 更低级的分解是比级的分级的分级的分级的分级的分级的分级的分级的分级的分级 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Coeffects for Sharing and Mutation
Arxiv
0+阅读 · 2022年9月15日
Level-strategyproof Belief Aggregation Mechanisms
Arxiv
0+阅读 · 2022年9月13日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员