We study differentially private (DP) stochastic optimization (SO) with data containing outliers and loss functions that are not Lipschitz continuous. To date, the vast majority of work on DP SO assumes that the loss is Lipschitz (i.e. stochastic gradients are uniformly bounded), and their error bounds scale with the Lipschitz parameter of the loss. While this assumption is convenient, it is often unrealistic: in many practical problems where privacy is required, data may contain outliers or be unbounded, causing some stochastic gradients to have large norm. In such cases, the Lipschitz parameter may be prohibitively large, leading to vacuous excess risk bounds. Thus, building on a recent line of work [WXDX20, KLZ22], we make the weaker assumption that stochastic gradients have bounded $k$-th moments for some $k \geq 2$. Compared with works on DP Lipschitz SO, our excess risk scales with the $k$-th moment bound instead of the Lipschitz parameter of the loss, allowing for significantly faster rates in the presence of outliers. For convex and strongly convex loss functions, we provide the first asymptotically optimal excess risk bounds (up to a logarithmic factor). Moreover, in contrast to the prior works [WXDX20, KLZ22], our bounds do not require the loss function to be differentiable/smooth. We also devise an accelerated algorithm that runs in linear time and yields improved (compared to prior works) and nearly optimal excess risk for smooth losses. Additionally, our work is the first to address non-convex non-Lipschitz loss functions satisfying the Proximal-PL inequality; this covers some classes of neural nets, among other practical models. Our Proximal-PL algorithm has nearly optimal excess risk that almost matches the strongly convex lower bound. Lastly, we provide shuffle DP variations of our algorithms, which do not require a trusted curator (e.g. for distributed learning).


翻译:我们用包含超值和损失函数的数据来研究差异私人(DP)随机优化(SO),这些数据包含超值和损失函数,但并非Lipschitz的连续性。到目前,DP SO的绝大多数工作假设损失是Lipschitz(即随机梯度梯度统一捆绑 ), 其错误与Lipschitz损失参数的界限尺度。 虽然这一假设很方便,但它往往不切实际:在许多需要隐私的实际问题中,数据可能包含超值和损失函数,从而导致某些超值梯度梯度的规范。在这种情况下,Lipschitz的超值参数可能非常大,导致无风险圈的超值。因此,在最新的工作线上[WXX20、KLZ22],我们更弱的梯度梯度梯度梯度连接到美元2美元的其他瞬间。 与DP Lipschitzitztri SOO相比, 我们的超值风险尺度与美元比起来,而不是利普斯卡茨的比值值值值值值值, 几乎是超值的, 超值的超值运值值值值值值值值值值值值值值值值值值函数, 将比值驱动值的机值,让更值发生更值损失值。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
52+阅读 · 2020年9月7日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
详解PyTorch中的ModuleList和Sequential
极市平台
0+阅读 · 2022年1月28日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年10月25日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
52+阅读 · 2020年9月7日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
详解PyTorch中的ModuleList和Sequential
极市平台
0+阅读 · 2022年1月28日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员