In the problem of aggregating experts' probabilistic predictions over an ordered set of outcomes, we introduce the axiom of level-strategy\-proofness (level-SP) and prove that it is a natural notion with several applications. Moreover, it is a robust concept as it implies incentive compatibility in a rich domain of single-peakedness over the space of cumulative distribution functions (CDFs). This contrasts with the literature which assumes single-peaked preferences over the space of probability distributions. Our main results are: (1) a reduction of our problem to the aggregation of CDFs; (2) the axiomatic characterization of level-SP probability aggregation functions with and without the addition of other axioms; (3) impossibility results which provide bounds for our characterization; (4) the axiomatic characterization of two new and practical level-SP methods: the proportional-cumulative method and the middlemost-cumulative method; and (5) the application of proportional-cumulative to extend approval voting, majority rule, and majority judgment methods to situations where voters/experts are uncertain about how to grade the candidates/alternatives to be ranked.\footnote{We are grateful to Thomas Boyer-Kassem, Roger Cooke, Aris Filos-Ratsikas, Herv\'e Moulin, Clemens Puppe and some anonymous EC2021 referees for their helpful comments and suggestions.} \keywords{Probability Aggregation Functions \and ordered Set of Alternatives \and Level Strategy-Proofness \and Proportional-Cumulative \and Middlemost-Cumulative}
翻译:在汇集专家对一组定购结果的概率预测问题时,我们引入了水平战略的严格性,并证明它是一个自然的概念。此外,这是一个强有力的概念,因为它意味着在对累积分配功能(CDFs)空间的单一多显示的丰富领域,激励兼容性。这与假定对概率分布空间的单一偏好的文献形成对比。我们的主要结果是:(1) 将我们的问题减少到CDF的汇总中;(2) 将SP的概率汇总功能与和不增加其他的绝对性相提并论;(3) 无法产生结果,为我们的定性提供了界限;(4) 将两种新的和实用的SP方法:比例-累积方法和中度-累积法方法;(5) 将比例-累积法用于扩大批准投票,多数规则,以及多数判断方法适用于选民/专家不确定如何将P-P-Proformorm-commal-commal-compressional-rupal-rupal-ral-ral-ral-ral-ral-ral-rothers-ral-rass-ral-ral-ral-rup-rup-rups-rass-rass-rup-ral-ral-rass-rass-rup-rup-ral-ral-ral-ral-ral-ral-ral-tos) 和S-r-r-r-s-ration_ 和s-s-s-ral-ral-ral-ral-ral-s-s-ral-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-r-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-r-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s