In this paper we study the properties of the Lasso estimator of the drift component in the diffusion setting. More specifically, we consider a multivariate parametric diffusion model $X$ observed continuously over the interval $[0,T]$ and investigate drift estimation under sparsity constraints. We allow the dimensions of the model and the parameter space to be large. We obtain an oracle inequality for the Lasso estimator and derive an error bound for the $L^2$-distance using concentration inequalities for linear functionals of diffusion processes. The probabilistic part is based upon elements of empirical processes theory and, in particular, on the chaining method.
翻译:在本文中,我们研究了在扩散环境中漂移部件的Lasso估计器的特性,更具体地说,我们考虑在间隔期间连续观测到的多变量参数扩散模型$X美元,并在宽度限制下调查漂移估计值。我们允许模型的尺寸和参数空间是巨大的。我们获得Lasso估计器的甲骨文不平等,并且利用扩散过程线性功能的浓度不平等,得出2美元距离值的误差。概率部分以经验过程理论的要素为基础,特别是以链条方法为基础。