Self-attention and channel attention, modelling the semantic interdependencies in spatial and channel dimensions respectively, have recently been widely used for semantic segmentation. However, computing self-attention and channel attention separately and then fusing them directly can cause conflicting feature representations. In this paper, we propose the Channelized Axial Attention (CAA) to seamlessly integrate channel attention and axial attention with reduced computational complexity. After computing axial attention maps, we propose to channelize the intermediate results obtained from the transposed dot-product so that the channel importance of each axial representation is optimized across the whole receptive field. We further develop grouped vectorization, which allows our model to be run in the very limited GPU memory with a speed comparable with full vectorization. Comparative experiments conducted on multiple benchmark datasets, including Cityscapes, PASCAL Context and COCO-Stuff, demonstrate that our CAA not only requires much less computation resources but also outperforms the state-of-the-art segmentation models based on ResNet-101 on all tested datasets.


翻译:自我关注和引导关注,分别模拟空间和频道层面的语义相互依存性,最近被广泛用于语义分割。然而,单独计算自我关注和引导关注,然后直接粉碎它们,可能会造成特征表达的冲突。在本文中,我们建议“循环轴心(CAA)”(CAA)将频道关注和同步关注无缝地结合,同时降低计算复杂性。在计算轴心分布图后,我们建议将从移植的点产品中获得的中间结果输送出去,以便在整个接收字段优化每个轴心代表的频道重要性。我们进一步开发分组矢量化,使我们的模型能够在非常有限的GPU记忆中运行,其速度与完全矢量化相仿。对多个基准数据集进行的比较实验,包括市景、PACAL环境、COCO-Stuff等,表明我们的CAA不仅需要更少的计算资源,而且超过了在所有测试数据集中基于ResNet-101的状态分解模型。

0
下载
关闭预览

相关内容

Attention机制最早是在视觉图像领域提出来的,但是真正火起来应该算是google mind团队的这篇论文《Recurrent Models of Visual Attention》[14],他们在RNN模型上使用了attention机制来进行图像分类。随后,Bahdanau等人在论文《Neural Machine Translation by Jointly Learning to Align and Translate》 [1]中,使用类似attention的机制在机器翻译任务上将翻译和对齐同时进行,他们的工作算是是第一个提出attention机制应用到NLP领域中。接着类似的基于attention机制的RNN模型扩展开始应用到各种NLP任务中。最近,如何在CNN中使用attention机制也成为了大家的研究热点。下图表示了attention研究进展的大概趋势。
【ECCV2020】EfficientFCN:语义分割中的整体引导解码器
专知会员服务
18+阅读 · 2020年8月23日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
Revisiting CycleGAN for semi-supervised segmentation
Arxiv
3+阅读 · 2019年8月30日
UPSNet: A Unified Panoptic Segmentation Network
Arxiv
4+阅读 · 2019年1月12日
Arxiv
3+阅读 · 2018年3月5日
VIP会员
相关VIP内容
【ECCV2020】EfficientFCN:语义分割中的整体引导解码器
专知会员服务
18+阅读 · 2020年8月23日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
Top
微信扫码咨询专知VIP会员