We consider the sparse moment problem of learning a $k$-spike mixture in high dimensional space from its noisy moment information in any dimension. We measure the accuracy of the learned mixtures using transportation distance. Previous algorithms either assume certain separation assumptions, use more recovery moments, or run in (super) exponential time. Our algorithm for the 1-dimension problem (also called the sparse Hausdorff moment problem) is a robust version of the classic Prony's method, and our contribution mainly lies in the analysis. We adopt a global and much tighter analysis than previous work (which analyzes the perturbation of the intermediate results of Prony's method). A useful technical ingredient is a connection between the linear system defined by the Vandermonde matrix and the Schur polynomial, which allows us to provide tight perturbation bound independent of the separation and may be useful in other contexts. To tackle the high dimensional problem, we first solve the 2-dimensional problem by extending the 1-dimension algorithm and analysis to complex numbers. Our algorithm for the high dimensional case determines the coordinates of each spike by aligning a 1-d projection of the mixture to a random vector and a set of 2d-projections of the mixture. Our results have applications to learning topic models and Gaussian mixtures, implying improved sample complexity results or running time over prior work.


翻译:我们认为,从高维空间从任何维度的噪音瞬间信息中学习$k$-spike混合物,是一个稀疏的瞬间问题。我们用运输距离测量所学混合物的准确性。以前的算法要么假设某些分离假设,使用更多的恢复瞬间,要么在(超级)指数时间运行。我们对一二分解问题的算法(也称为稀疏Hausdorf瞬间问题)是典型的Prony方法的可靠版本,我们的贡献主要在于分析。我们采用了比以往工作(分析Prony方法中间结果的渗透性)更严密的全球分析。一个有用的技术成分是Vandermonde矩阵定义的线性系统与Schur 多元分子(超强) 之间的连接,它使我们能够提供独立于分离的紧凑的扰动性透度(也称为Hausdorform的问题) 。为了解决高维度问题,我们首先将一二分解算法和分析扩大到复杂的数字。我们高维基案例的算法通过调整一个峰值的坐标坐标,将我们之前的模型的模型的模型和升级的混合物的模型的组合结果的随机投影判。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年9月15日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员