A two dimensional eigenvalue problem (2DEVP) of a Hermitian matrix pair $(A, C)$ is introduced in this paper. The 2DEVP can be viewed as a linear algebraic formulation of the well-known eigenvalue optimization problem of the parameter matrix $H(\mu) = A - \mu C$. We present fundamental properties of the 2DEVP such as the existence, the necessary and sufficient condition for the finite number of 2D-eigenvalues and variational characterizations. We use eigenvalue optimization problems from the minmax of two Rayleigh quotients and the computation of distance to instability to show their connections with the 2DEVP and new insights of these problems derived from the properties of the 2DEVP.
翻译:本文介绍了埃米特矩阵对一对(A、C)美元的两个维维电子价值问题(2DEVP),2DEVP可视为参数矩阵$H(mu)=A-\mu C$这一众所周知的已知电子价值优化问题的线性代数配方。我们提出了2DEVP的基本特性,例如存在2D-电子价值和变异特性的有限数目、必要和充分条件。我们使用两个雷利商数的微米和计算距离至不稳定的偏差产生的电子价值优化问题来显示它们与2DEVP的联系,以及从2DEVP特性中对这些问题的新认识。