This paper contains two major contributions. First we derive, following the discrete de Rham (DDR) and Virtual Element (VEM) paradigms, pressure-robust methods for the Stokes equations that support arbitrary orders and polyhedral meshes. Unlike other methods presented in the literature, pressure-robustness is achieved here without resorting to an $\boldsymbol{H}({\rm div})$-conforming construction on a submesh, but rather projecting the volumetric force onto the discrete $\boldsymbol{H}({\bf curl})$ space. The cancellation of the pressure error contribution stems from key commutation properties of the underlying DDR and VEM complexes. The pressure-robust error estimates in $h^{k+1}$ (with $h$ denoting the meshsize and $k\ge 0$ the polynomial degree of the DDR or VEM complex) are proven theoretically and supported by a panel of three-dimensional numerical tests. The second major contribution of the paper is an in-depth study of the relations between the DDR and VEM approaches. We show, in particular, that a complex developed following one paradigm admits a reformulation in the other, and that couples of related DDR and VEM complexes satisfy commuting diagram properties with the degrees of freedom maps.
翻译:本文包含两大贡献。 首先,我们根据离散的雷姆(DRAM)和虚拟元素(VEM)范式,为支持任意命令和多面体模类的斯托克斯方程式而采用压力-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气压-气-气-气-气-气-气-气-气-气-气-气压-气压-气压-气压-气压-气压-气-气压-气压-气压-气