SoCs are now designed with their own AI accelerator segment to accommodate the ever-increasing demand of Deep Learning (DL) applications. With powerful MAC engines for matrix multiplications, these accelerators show high computing performance. However, because of limited memory resources (i.e., bandwidth and capacity), they fail to achieve optimum system performance during large batch training and inference. In this work, we propose a memory system with high on-chip capacity and bandwidth to shift the gear of AI accelerators from memory-bound to achieving system-level peak performance. We develop the memory system with DTCO-enabled customized SOT-MRAM as large on-chip memory through STCO and detailed characterization of the DL workloads. %We evaluate our workload-aware memory system on the CV and NLP benchmarks and observe significant PPA improvement compared to an SRAM-based in both inference and training modes. Our workload-aware memory system achieves 8X energy and 9X latency improvement on Computer Vision (CV) benchmarks in training and 8X energy and 4.5X latency improvement on Natural Language Processing (NLP) benchmarks in training while consuming only around 50% of SRAM area at iso-capacity.
翻译:暂无翻译