Regularization is a long-standing challenge for ill-posed linear inverse problems, and a prototype is the Fredholm integral equation of the first kind. We introduce a practical RKHS regularization algorithm adaptive to the discrete noisy measurement data and the underlying linear operator. This RKHS arises naturally in a variational approach, and its closure is the function space in which we can identify the true solution. We prove that the RKHS-regularized estimator has a mean-square error converging linearly as the noise scale decreases, with a multiplicative factor smaller than the commonly-used $L^2$-regularized estimator. Furthermore, numerical results demonstrate that the RKHS-regularizer significantly outperforms $L^2$-regularizer when either the noise level decays or when the observation mesh refines.


翻译:正则化一直是非线性反问题的长期挑战,一种典型的情况是一类Fredholm积分方程。本文引入一种实用的RKHS正则化算法,能够自适应于离散的噪声测量数据和底层线性算子。这个RKHS在变分方法中自然产生,并且其闭包是我们可以确定真实解的函数空间。我们证明RKHS正则化估计具有均方误差线性收敛,随着噪声比例的减小,其乘法因子小于常用的$L^2$正则化估计。此外,数值结果表明,当噪声水平下降或者观测网格细化时,RKHS正则化器明显优于$L^2$正则化器。

0
下载
关闭预览

相关内容

在数学,统计学和计算机科学中,尤其是在机器学习和逆问题中,正则化是添加信息以解决不适定问题或防止过度拟合的过程。 正则化适用于不适定的优化问题中的目标函数。
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
专知会员服务
50+阅读 · 2020年12月14日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月18日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
13+阅读 · 2021年5月3日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员