We build a field level emulator for cosmic structure formation that is accurate in the nonlinear regime. Our emulator consists of two convolutional neural networks trained to output the nonlinear displacements and velocities of N-body simulation particles based on their linear inputs. Cosmology dependence is encoded in the form of style parameters at each layer of the neural network, enabling the emulator to effectively interpolate the outcomes of structure formation between different flat $\Lambda$CDM cosmologies over a wide range of background matter densities. The neural network architecture makes the model differentiable by construction, providing a powerful tool for fast field level inference. We test the accuracy of our method by considering several summary statistics, including the density power spectrum with and without redshift space distortions, the displacement power spectrum, the momentum power spectrum, the density bispectrum, halo abundances, and halo profiles with and without redshift space distortions. We compare these statistics from our emulator with the full N-body results, the COLA method, and a fiducial neural network with no cosmological dependence. We find our emulator gives accurate results down to scales of $k \sim 1\ \mathrm{Mpc}^{-1}\, h$, representing a considerable improvement over both COLA and the fiducial neural network. We also demonstrate that our emulator generalizes well to initial conditions containing primordial non-Gaussianity, without the need for any additional style parameters or retraining.
翻译:我们为宇宙结构的形成构建了一个在非线性系统中准确的实地水平模拟器。 我们的模拟器由两个经过训练的进化神经网络组成, 以根据线性输入输出非线性变换和N- 体模拟粒子的速率。 宇宙依赖性在神经网络的每一层以样式参数的形式进行编码, 使模拟器能够有效地将不同平面 $\Lambda$CDM 的宇宙体构成在广泛的背景物质密度范围内的结果相互调和。 我们的神经网络结构通过构建使模型变得不同, 为快速的场级推断提供了强大的工具。 我们测试我们的方法的准确性, 包括包含和没有调整的空间变换的密度能量频谱、 动力频谱、 密度双曲线、 烟幕丰度、 以及 带和不调整空间扭曲的海拔剖面图。 我们把这些来自我们的模拟器的数据与完整的 N- 发现结果, COLA 方法, 以及一个不代表我们总体变色网络的准确度网络, 显示一个不动的准确的系统结果。