In this paper, we propose a novel light field compression method based on a Quantized Distilled Low Rank Neural Radiance Field (QDLR-NeRF) representation. While existing compression methods encode the set of light field sub-aperture images, our proposed method instead learns an implicit scene representation in the form of a Neural Radiance Field (NeRF), which also enables view synthesis. For reducing its size, the model is first learned under a Low Rank (LR) constraint using a Tensor Train (TT) decomposition in an Alternating Direction Method of Multipliers (ADMM) optimization framework. To further reduce the model size, the components of the tensor train decomposition need to be quantized. However, performing the optimization of the NeRF model by simultaneously taking the low rank constraint and the rate-constrained weight quantization into consideration is challenging. To deal with this difficulty, we introduce a network distillation operation that separates the low rank approximation and the weight quantization in the network training. The information from the initial LR constrained NeRF (LR-NeRF) is distilled to a model of a much smaller dimension (DLR-NeRF) based on the TT decomposition of the LR-NeRF. An optimized global codebook is then learned to quantize all TT components, producing the final QDLRNeRF. Experimental results show that our proposed method yields better compression efficiency compared with state-of-the-art methods, and it additionally has the advantage of allowing the synthesis of any light field view with a high quality.
翻译:在本文中, 我们提出一种新的光场压缩方法, 其基础是量化的蒸馏低级神经辐射场( QDLR- NERF) 代表。 虽然现有的压缩方法对一组光场次孔径图像进行了编码, 我们提议的方法却以神经光度场( NERF) 的形式学习隐含的场景代表, 也可以进行视图合成。 为了缩小其规模, 模型首先在低级列列列( LR) 限制下学习, 使用Tensor Train( TTT) 解析成一个调制多相机( ADMM) 优化框架。 为了进一步降低模型的大小, 需要对高压列列列列车拆解的组件进行定量。 然而, 优化 NERF 模型同时使用低级别限制和受比率限制的重量再平衡, 要将所有低级别近距离列车列车( LRF) 和任何轻度再分解的网络训练中。 从最初的LRF( LRR- NER- NER- NRF) 的精度精度分析中, 的精度的精度的精度比的精度的精度, 和精度的精度的精度的精度的精度的精度的精度的精度的精度的精度, 的精度的精度的精度的精度比的精度的精度的精度的精度, 的精度的精度比的精度的精度的精度的精度的精度, 的精度比的精度比的精度比的精度比的精度的精度的精度的精度的精度, 的精度比的精度比的精度的精度的精度比的精度的精度的精度的精度的精度的精度的精度的精度的精度都的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度都的精度都的精度都的精度