The two-dimensional $\sigma$-model with the de Sitter target space has a local canonical description in the north pole diamond of the Penrose diagram in the cosmological gauge. The left and right moving modes on the embedded base space with the topology of a cylinder are entangled among themselves and interact with the time-dependent components of the metric of the de Sitter space. Firstly we address the issue of the existence of the untangled oscillator representation and the description of the nonequilibrium dynamics of the untangled modes. We show that the untangled oscillators can be obtained from the entangled operators by applying a set of Bogoliubov transformations that satisfy a set of constraints that result from the requirement that the partial evolution generator be diagonal. Secondly, we determine the nonequilibrium dynamics of the untangled modes in the Non-Equilibrium Thermo Field Dynamics formalism. In this setting, the thermal modes are represented as thermal doublet oscillators that satisfy partial evolution equations of Heisenberg-type. We use these equations to compute the local free one-body propagator of an arbitrary mode between two times. Thirdly, we discuss the field representation of the thermal modes. We show that there is a set of thermal doublet fields that satisfy the equal time canonical commutation relations, are solutions to the $\sigma$-model equations of motion and can be decomposed in terms of thermal doublet oscillators. Finally, we construct a local partial evolution functional of Hamilton-like form for the thermal doublet fields.
翻译:与 De Sitter 目标空间的双维 $\ sigma$ 模型在宇宙仪表中的 Penrose 图表北极方块中具有本地的 Canonal 描述。 在嵌入的基空间上, 与一个气瓶的地形表层相交织的左向和右向移动模式, 并且与调离空间测量的基于时间的构件相互作用。 首先, 我们处理的是, 存在不缠绕的 浮标 代表和描述未缠绕模式的无平衡动态的问题。 我们显示, 通过应用一组 Bogoliubov 的内嵌基空间的左向和右移动模式, 可以从被缠绕的操作者那里获取未缠绕的振动振动振动器 。 我们用这些不均匀的模型来构建本地的温度平流模式 。 我们用这些解动模式来构建一个任意的平流式的我们方程式 。