BERT-based re-ranking and dense retrieval (DR) systems have been shown to improve search effectiveness for spoken content retrieval (SCR). However, both methods can still show a reduction in effectiveness when using ASR transcripts in comparison to accurate manual transcripts. We find that a known-item search task on the How2 dataset of spoken instruction videos shows a reduction in mean reciprocal rank (MRR) scores of 10-14%. As a potential method to reduce this disparity, we investigate the use of semi-supervised ASR transcripts and N-best ASR transcripts to mitigate ASR errors for spoken search using BERT-based ranking. Semi-supervised ASR transcripts brought 2-5.5% MRR improvements over standard ASR transcripts and our N-best early fusion methods for BERT DR systems improved MRR by 3-4%. Combining semi-supervised transcripts with N-best early fusion for BERT DR reduced the MRR gap in search effectiveness between manual and ASR transcripts by more than 50% from 14.32% to 6.58%.


翻译:事实证明,基于BERT的重新排序和密集检索(DR)系统提高了对口语内容检索(SCR)的搜索效力。但是,与准确的人工记录誊本相比,这两种方法在使用ASR记录誊本时仍然可以显示效力下降。我们发现,关于口语教学录像的 " How2 " 数据集的已知项目搜索任务显示,平均对等排名分数减少了10-4%。作为缩小这一差距的潜在方法,我们调查使用半监督的ASR记录誊本和最佳ASR记录誊本的情况,以通过BERT的排名减少口语搜索的ASR错误。 半监督的ASR记录誊本比标准的ASR记录誊本和我们的BERT DR系统N最佳早期融合方法提高了2.4%至4%。将半监督记录誊本与BERT DR的N最佳早期融合相结合,将人工和ASR记录誊本的搜索效率差距缩小50%以上,从14.32%降至6.58%。

0
下载
关闭预览

相关内容

语音识别是计算机科学和计算语言学的一个跨学科子领域,它发展了一些方法和技术,使计算机可以将口语识别和翻译成文本。 它也被称为自动语音识别(ASR),计算机语音识别或语音转文本(STT)。它整合了计算机科学,语言学和计算机工程领域的知识和研究。
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月9日
Arxiv
0+阅读 · 2023年3月9日
Arxiv
16+阅读 · 2021年11月27日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员