We propose a novel way of representing and analysing single-cell genomic count data, by modelling the observed data count matrix as a network adjacency matrix. This perspective enables theory from stochastic networks modelling to be applied in a principled way to this type of data, providing new ways to view and analyse these data, and giving first-principles theoretical justification to established, successful methods. We show the success of this approach in the context of three cell-biological contexts, from the epiblast/epithelial/neural lineage. New technology has made it possible to gather genomic data from single cells at unprecedented scale, and this brings with it new challenges to deal with much higher levels of heterogeneity than expected between individual cells. Novel, tailored, computational-statistical methodology is needed to make the most of these new types of data, involving collaboration between mathematical and biomedical scientists.


翻译:我们建议一种代表和分析单细胞基因组计数数据的新方式,将观察到的数据计数矩阵建模成一个网络相邻矩阵,以此为模式,从随机网络建模的理论以有原则的方式应用于这类数据,为观察和分析这些数据提供新的方法,为既定的成功方法提供第一原则的理论依据。我们从上流/下水/内河线的三个细胞生物背景中展示了这一方法的成功。新技术使得有可能以前所未有的规模从单细胞中收集基因组数据,这带来了新的挑战,要处理比个体细胞之间预期高得多的异质性。需要新颖、定制、计算-统计方法,才能使这些新类型的数据得到充分利用,其中涉及数学和生物医学科学家之间的合作。</s>

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月24日
Arxiv
92+阅读 · 2022年8月2日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
10+阅读 · 2020年11月26日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
20+阅读 · 2020年6月8日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Arxiv
0+阅读 · 2023年4月24日
Arxiv
92+阅读 · 2022年8月2日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
10+阅读 · 2020年11月26日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
20+阅读 · 2020年6月8日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员