Graph Convolutional Networks (GCNs) and their variants have achieved significant performances on various recommendation tasks. However, many existing GCN models tend to perform recursive aggregations among all related nodes, which can arise severe computational burden to hinder their application to large-scale recommendation tasks. To this end, this paper proposes the flattened GCN~(FlatGCN) model, which is able to achieve superior performance with remarkably less complexity compared with existing models. Our main contribution is three-fold. First, we propose a simplified but powerful GCN architecture which aggregates the neighborhood information using one flattened GCN layer, instead of recursively. The aggregation step in FlatGCN is parameter-free such that it can be pre-computed with parallel computation to save memory and computational cost. Second, we propose an informative neighbor-infomax sampling method to select the most valuable neighbors by measuring the correlation among neighboring nodes based on a principled metric. Third, we propose a layer ensemble technique which improves the expressiveness of the learned representations by assembling the layer-wise neighborhood representations at the final layer. Extensive experiments on three datasets verify that our proposed model outperforms existing GCN models considerably and yields up to a few orders of magnitude speedup in training efficiency.


翻译:然而,许多现有的GCN模型倾向于在所有相关节点中进行循环聚合,这可能会产生严重的计算负担,从而妨碍将其应用于大规模建议任务。为此,本文件提议采用平坦的GCN~(FlatGCN)模型,该模型能够取得优异的性能,而与现有模型相比,其复杂性要小得多。我们的主要贡献是三倍。首先,我们提议采用简化但强大的GCN结构,利用一个平坦的GCN层,而不是递归式地将邻里信息汇总起来。FlatGCN中的聚合步骤没有参数,因此可以预先进行平行计算,以节省记忆和计算成本。第二,我们提议采用信息丰富的邻里-信息轴取样方法,通过测量相邻无偏邻点之间在有原则的测量度上的相关性,选择最有价值的邻里邻居。第三,我们提议采用层混合技术,通过在最后一层的层次上将模型的层次上的邻里代表结构演示来改进所学到的表达度。在最后一层的层次上,对目前水平上的数据进行广泛的实验,以高压率进行。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
15+阅读 · 2021年6月27日
Arxiv
20+阅读 · 2019年11月23日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
31+阅读 · 2018年11月13日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员