In this paper, we propose an effective point cloud generation method, which can generate multi-resolution point clouds of the same shape from a latent vector. Specifically, we develop a novel progressive deconvolution network with the learning-based bilateral interpolation. The learning-based bilateral interpolation is performed in the spatial and feature spaces of point clouds so that local geometric structure information of point clouds can be exploited. Starting from the low-resolution point clouds, with the bilateral interpolation and max-pooling operations, the deconvolution network can progressively output high-resolution local and global feature maps. By concatenating different resolutions of local and global feature maps, we employ the multi-layer perceptron as the generation network to generate multi-resolution point clouds. In order to keep the shapes of different resolutions of point clouds consistent, we propose a shape-preserving adversarial loss to train the point cloud deconvolution generation network. Experimental results demonstrate the effectiveness of our proposed method.


翻译:在本文中,我们提出了一个有效的点云生成方法,它能够从潜向矢量中产生同形状的多分辨率云。具体地说,我们开发了一个以学习为基础的双边内插新颖的渐进分解网络。基于学习的双边内插在点云的空间空间和特征空间中进行,以便利用点云的局部几何结构信息。从低分辨率云开始,通过双边间插和最大集合作业,分解网络可以逐步输出高分辨率的地方和全球地貌图。通过对本地和全球地貌图的不同分辨率进行搭配,我们使用多层宽度作为生成多分辨率点云的生成网络。为了保持点云不同分辨率的形状的一致性,我们提议了一种保持形状的对抗性损失来训练点云分解生成网络。实验结果显示了我们拟议的方法的有效性。

0
下载
关闭预览

相关内容

商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
CVPR2020 | 商汤-港中文等提出PV-RCNN:3D目标检测新网络
专知会员服务
43+阅读 · 2020年4月17日
专知会员服务
60+阅读 · 2020年3月19日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
CVPR2019 oral | CPNet : 对应提议网络
极市平台
4+阅读 · 2019年6月17日
CVPR2019| 05-20更新17篇点云相关论文及代码合集
极市平台
23+阅读 · 2019年5月20日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
12+阅读 · 2019年1月24日
Arxiv
8+阅读 · 2018年5月21日
VIP会员
相关VIP内容
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
CVPR2020 | 商汤-港中文等提出PV-RCNN:3D目标检测新网络
专知会员服务
43+阅读 · 2020年4月17日
专知会员服务
60+阅读 · 2020年3月19日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
CVPR2019 oral | CPNet : 对应提议网络
极市平台
4+阅读 · 2019年6月17日
CVPR2019| 05-20更新17篇点云相关论文及代码合集
极市平台
23+阅读 · 2019年5月20日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员