We consider finite two-person normal form games. The following four properties of their game forms are equivalent: (i) Nash-solvability, (ii) zero-sum-solvability, (iii) win-lose-solvability, and (iv) tightness. For (ii, iii, iv) this was shown by Edmonds and Fulkerson in 1970. Then, in 1975, (i) was added to this list and it was also shown that these results cannot be generalized for $n$-person case with $n > 2$. In 1990, tightness was extended to vector game forms ($v$-forms) and it was shown that such $v$-tightness and zero-sum-solvability are still equivalent, yet, do not imply Nash-solvability. These results are applicable to several classes of stochastic games with perfect information. Here we suggest one more extension of tightness introducing $v^+$-tight vector game forms ($v^+$-forms). We show that such $v^+$-tightness and Nash-solvability are equivalent in case of weakly rectangular game forms and positive cost functions. This result allows us to reduce the so-called bi-shortest path conjecture to $v^+$-tightness of $v^+$-forms. However, both (equivalent) statements remain open.
翻译:我们考虑的是有限的双人普通游戏。以下四个游戏形式的四个属性是等效的:(一) Nash-溶性,(二) 零和溶性,(三) 赢赢-溶性,(四) 紧度。(二、三、四) 这是1970年Edmonds和Fulkeson显示的。然后,在1975年,(一) 添加到这个列表中,(一) 也显示这些结果不能在美元/美元/美元/美元(美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/