We start by considering the problem of estimating intrinsic distances on a smooth surface. We show that sharper estimates can be obtained via a reconstruction of the surface, and discuss the use of the tangential Delaunay complex for that purpose. We further show that the resulting approximation rate is in fact optimal in an information-theoretic (minimax) sense. We then turn to manifold learning and argue that a variant of Isomap where the distances are instead computed on a reconstructed surface is minimax optimal for the problem of isometric manifold embedding.
翻译:我们首先考虑在平滑的表面估计内在距离的问题。我们显示,通过对表面进行重建可以获得更精确的估算,并讨论为此使用相近的底劳纳综合体的问题。我们进一步表明,由此得出的近似率实际上在信息理论(最小值)意义上是最佳的。 然后我们转向多重学习,并争论说,在重建的表面计算距离的伊索马普变异物对于非偏差体嵌入问题来说是最佳的。