Let $f:[0,1]^d\to\mathbb{R}$ be a completely monotone integrand as defined by Aistleitner and Dick (2015) and let points $\boldsymbol{x}_0,\dots,\boldsymbol{x}_{n-1}\in[0,1]^d$ have a non-negative local discrepancy (NNLD) everywhere in $[0,1]^d$. We show how to use these properties to get a non-asymptotic and computable upper bound for the integral of $f$ over $[0,1]^d$. An analogous non-positive local discrepancy (NPLD) property provides a computable lower bound. It has been known since Gabai (1967) that the two dimensional Hammersley points in any base $b\ge2$ have non-negative local discrepancy. Using the probabilistic notion of associated random variables, we generalize Gabai's finding to digital nets in any base $b\ge2$ and any dimension $d\ge1$ when the generator matrices are permutation matrices. We show that permutation matrices cannot attain the best values of the digital net quality parameter when $d\ge3$. As a consequence the computable absolutely sure bounds we provide come with less accurate estimates than the usual digital net estimates do in high dimensions. We are also able to construct high dimensional rank one lattice rules that are NNLD. We show that those lattices do not have good discrepancy properties: any lattice rule with the NNLD property in dimension $d\ge2$ either fails to be projection regular or has all its points on the main diagonal. Complete monotonicity is a very strict requirement that for some integrands can be mitigated via a control variate.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员