Autonomous robots in endovascular operations have the potential to navigate circulatory systems safely and reliably while decreasing the susceptibility to human errors. However, there are numerous challenges involved with the process of training such robots such as long training duration due to sample inefficiency of machine learning algorithms and safety issues arising from the interaction between the catheter and the endovascular phantom. Physics simulators have been used in the context of endovascular procedures, but they are typically employed for staff training and generally do not conform to the autonomous cannulation goal. Furthermore, most current simulators are closed-source which hinders the collaborative development of safe and reliable autonomous systems. In this work, we introduce CathSim, an open-source simulation environment that accelerates the development of machine learning algorithms for autonomous endovascular navigation. We first simulate the high-fidelity catheter and aorta with the state-of-the-art endovascular robot. We then provide the capability of real-time force sensing between the catheter and the aorta in the simulation environment. We validate our simulator by conducting two different catheterisation tasks within two primary arteries using two popular reinforcement learning algorithms, Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC). The experimental results show that using our open-source simulator, we can successfully train the reinforcement learning agents to perform different autonomous cannulation tasks.


翻译:自主机器人在内科手术中具有潜力,可以在降低人为操作失误的同时安全可靠地穿越循环系统。然而,培训此类机器人的过程存在许多挑战,例如机器学习算法的样本效率低导致的长时间培训以及导管与内部仿真模型之间的交互所引发的安全问题。物理仿真器已被用于内科操作,在员工培训方面通常取得了很好的效果,但通常并不符合自主穿刺目标。此外,大多数当前模拟器都是闭源的,这妨碍了安全可靠自主系统的合作开发。在这项工作中,我们介绍了CathSim,这是一种开源仿真环境,可加速开发用于自主血管导航的机器学习算法。我们首先使用最先进的内科机器人在仿真环境中模拟高保真度的导管和主动脉。然后,我们提供了在仿真环境中导管和主动脉之间实时力感知的能力。我们通过使用两种流行的强化学习算法,Proximal Policy Optimization (PPO)和Soft Actor-Critic (SAC),在两个主要动脉中执行了两个不同的穿刺任务来验证我们的模拟器。实验结果表明,使用我们的开源模拟器,我们可以成功地训练强化学习代理以执行不同的自主穿刺任务。

1
下载
关闭预览

相关内容

《行为与认知机器人学》,241页pdf
专知会员服务
53+阅读 · 2021年4月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
16+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
27+阅读 · 2023年1月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
16+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员