The non-dominated sorting genetic algorithm II (NSGA-II) is the most intensively used multi-objective evolutionary algorithm (MOEA) in real-world applications. However, in contrast to several simple MOEAs analyzed also via mathematical means, no such study exists for the NSGA-II so far. In this work, we show that mathematical runtime analyses are feasible also for the NSGA-II. As particular results, we prove that with a population size four times larger than the size of the Pareto front, the NSGA-II with two classic mutation operators and four different ways to select the parents satisfies the same asymptotic runtime guarantees as the SEMO and GSEMO algorithms on the basic OneMinMax and LeadingOnesTrailingZeros benchmarks. However, if the population size is only equal to the size of the Pareto front, then the NSGA-II cannot efficiently compute the full Pareto front: For an exponential number of iterations, the population will always miss a constant fraction of the Pareto front. Our experiments confirm the above findings.
翻译:非占主导地位的分类基因算法II(NSGA-II)是现实世界应用中最常用的多客观进化算法(MOEA),然而,与通过数学分析的若干简单的MOEA(MOEA)相比,迄今为止NSGA-II还不存在这样的研究。在这项工作中,我们表明数学运行时间分析对于NSGA-II也是可行的。作为特别的结果,我们证明,人口规模比Pareto前线大四倍于Pareto前线,NSGA-II拥有两个典型的突变操作员,选择父母的四种不同方式都符合SEMO和GSEMO基本标准中SEMO和GEEMO的类似临时运行时间保证。然而,如果人口规模只相当于Pareto前线的大小,那么NSGA-II就无法有效地计算整个Pareto前线:对于指数数,人口总是会错失Pareto前线的固定部分。我们的实验证实了上述结论。