Understanding the global dynamics of a robot controller, such as identifying attractors and their regions of attraction (RoA), is important for safe deployment and synthesizing more effective hybrid controllers. This paper proposes a topological framework to analyze the global dynamics of robot controllers, even data-driven ones, in an effective and explainable way. It builds a combinatorial representation representing the underlying system's state space and non-linear dynamics, which is summarized in a directed acyclic graph, the Morse graph. The approach only probes the dynamics locally by forward propagating short trajectories over a state-space discretization, which needs to be a Lipschitz-continuous function. The framework is evaluated given either numerical or data-driven controllers for classical robotic benchmarks. It is compared against established analytical and recent machine learning alternatives for estimating the RoAs of such controllers. It is shown to outperform them in accuracy and efficiency. It also provides deeper insights as it describes the global dynamics up to the discretization's resolution. This allows to use the Morse graph to identify how to synthesize controllers to form improved hybrid solutions or how to identify the physical limitations of a robotic system.
翻译:了解机器人控制器的全球动态,例如识别吸引器及其吸引区域(ROA),对于安全部署和合成更有效的混合控制器(ROA)非常重要。本文件提出一个地形框架,以有效和可解释的方式分析机器人控制器(甚至是数据驱动控制器)的全球动态,甚至数据驱动器的全球性动态。它构建了一个代表系统基础空间和非线性动态的组合图,该图在定向的循环图“摩斯图”中进行了总结。该图仅通过在州空间分解功能上前方传播短轨来探测当地动态,这需要有一个Lipschitz持续功能。该图用于评估机器人控制器的全球动态,无论是数字控制器还是数据驱动控制器,用于经典机器人基准。它与用于估算这些控制器的机器人状态空间和非线性动态的既定分析和最新机器学习替代方法相比较。它显示在准确性和效率方面超越了它们。它还提供了更深入的洞察力,因为它描述了离解的分辨率之前的全球动态。它能够使用Morse图来确定如何合成控制器来形成改良的混合解决方案或物理限制。