Time series synthesis is an important research topic in the field of deep learning, which can be used for data augmentation. Time series data types can be broadly classified into regular or irregular. However, there are no existing generative models that show good performance for both types without any model changes. Therefore, we present a general purpose model capable of synthesizing regular and irregular time series data. To our knowledge, we are the first designing a general purpose time series synthesis model, which is one of the most challenging settings for time series synthesis. To this end, we design a generative adversarial network-based method, where many related techniques are carefully integrated into a single framework, ranging from neural ordinary/controlled differential equations to continuous time-flow processes. Our method outperforms all existing methods.
翻译:时间序列合成是深层学习领域的一个重要研究课题,可用于数据增强。时间序列数据类型可以广泛分为常规或非常规类别。然而,目前没有现成的基因模型显示两种类型在不作任何模式改变的情况下都表现良好。因此,我们提出了一个一般目的模型,能够综合常规和不定期的时间序列数据。据我们所知,我们首先设计了一个通用时间序列合成模型,这是时间序列合成最具挑战性的环境之一。为此,我们设计了一种基因化对抗网络法,许多相关技术被仔细地纳入一个单一的框架,从神经普通/控制差异方程式到连续的时间流过程。我们的方法超越了所有现有的方法。