A "stepwise lookahead" variation of the random forest algorithm is presented for its ability to better uncover feature interdependencies inherent in complex systems. Conventionally, random forests are built from "greedy" decision trees which each consider only one split at a time during their construction. In contrast, the decision trees included in this random forest algorithm each simultaneously consider three split nodes in tiers of depth two. It is demonstrated on synthetic data and financial price time series that the lookahead version significantly outperforms the greedy one if certain non-linear relationships between feature-pairs are present. This outperformance is particularly pronounced in regimes of low signal-to-noise ratio. A long-short trading strategy for copper futures is then backtested by training both greedy and non-greedy random forests to predict the signs of daily price returns. The resulting superior performance of the lookahead algorithm is at least partially explained by the presence of "XOR-like" relationships between long-term and short-term technical indicators. More generally, across all examined datasets, when no such relationships between features are present, performance across random forests is similar. Given its enhanced ability to understand the feature-interdependencies present in complex systems, this lookahead variation is a useful extension to the toolkit of data scientists.


翻译:随机森林算法的“ 逐步外观” 变异显示为随机森林算法的“ 逐步外观”, 因为它能够更好地发现复杂系统中固有的特有相互依存性。 常规上, 随机森林是从“ 贪婪” 决策树建造的, 每个人在构建过程中都考虑一个分割。 相反, 随机森林算法中包含的决策树同时考虑深度2级的三个分割节点。 合成数据和金融价格时间序列显示, 外观版本明显超过贪婪的版本, 如果存在某些特质与短期技术指标之间的非线性关系。 这种超常性表现在信号与噪音比率低的制度中尤为明显。 用于铜期未来的长期短期贸易战略, 之后通过培训贪婪和非基因随机森林来预测每日物价回报的迹象来进行回溯检验。 由此产生的超强的外观性能至少部分是由于存在长期与短期技术指标之间的“ XOR 类” 关系。 更一般地说, 在所有已调查过的数据设置中, 当这些特征之间没有这种相互关系时, 跨森林期科学家之间没有这种相互关系时, 的任意变化能力是类似的。

0
下载
关闭预览

相关内容

随机森林 指的是利用多棵树对样本进行训练并预测的一种分类器。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月24日
Arxiv
15+阅读 · 2021年2月19日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员