Envelope method was recently proposed as a method to reduce the dimension of responses in multivariate regressions. However, when there exists missing data, the envelope method using the complete case observations may lead to biased and inefficient results. In this paper, we generalize the envelope estimation when the predictors and/or the responses are missing at random. Specifically, we incorporate the envelope structure in the expectation-maximization (EM) algorithm. As the parameters under the envelope method are not pointwise identifiable, the EM algorithm for the envelope method was not straightforward and requires a special decomposition. Our method is guaranteed to be more efficient, or at least as efficient as, the standard EM algorithm. Moreover, our method has the potential to outperform the full data MLE. We give asymptotic properties of our method under both normal and non-normal cases. The efficiency gain over the standard EM is confirmed in simulation studies and in an application to the Chronic Renal Insufficiency Cohort (CRIC) study.


翻译:最近提出了信封方法,作为减少多变回归反应范围的方法。然而,当缺少数据时,使用完整案例观测的封套方法可能导致偏差和效率低下的结果。在本文中,当预测器和/或答复随机缺失时,我们将信封估计法加以概括。具体地说,我们将信封结构纳入预期最大化算法。由于信封方法下的参数不易识别,因此信封方法的EM算法并不简单,需要特殊解析。我们的方法保证效率更高,至少与标准的EM算法一样有效。此外,我们的方法有可能超越数据完整 MLE。我们在正常和非正常情况下都提供我们方法的无损特性。模拟研究和慢性Renal Infear Cohort(CRIC)研究的应用证实了标准EM的效率收益。

0
下载
关闭预览

相关内容

数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月17日
Arxiv
13+阅读 · 2021年3月29日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员