One of the most important properties of high dimensional expanders is that high dimensional random walks converge rapidly. This property has proven to be extremely useful in variety of fields in the theory of computer science from agreement testing to sampling, coding theory and more. In this paper we improve upon the result of Kaufman-Oppenheim and Alev-Lau regarding the convergence of random walks by presenting a structured version of their result. While previous works examined the expansion in the viewpoint of the worst possible eigenvalue, in this work we relate the expansion of a function to the entire spectrum of the random walk operator using the structure of the function. In some cases this finer result can be much better than the worst case. In order to prove our structured version of the convergence of random walks, we present a general framework that allows us to relate the convergence of random walks to the trickling down theorem for the first time. Concretely, we show that both the state of the art results for convergence of random walks and the tricking down theorem can be derived using the same argument that we present here. This new, unified, way of looking at the convergence of high dimensional random walks and the trickling down theorem gives us a new understanding of pseudorandom functions that allows us to consider pseudorandom functions in one-sided local spectral expanders for the first time.
翻译:高维扩张器的最重要特性之一是高维随机行走快速交汇。 这种属性已证明在计算机科学理论从协议测试到抽样、编码理论等等的各个领域非常有用。 在本文中,我们通过展示一个结构化版本的结果,改进了Kaufman-Oppenheim 和 Alev-Lau 随机行走的趋同。 先前的作品从最糟糕的叶质价值的角度审视了行走的扩展情况, 在这项工作中,我们利用函数结构将功能的扩展与随机行走操作器的全方位操作器的扩展情况联系起来。 在有些情况中,这种更精细的结果可能比最差的情况要好得多。 为了证明我们随机行走的汇合结构版本,我们提出了一个总的框架,使我们能够将随机行行走的趋同与正弦相交接起来。 具体地说, 我们可以用我们在此展示的同一论点来推断出随机行走的艺术结果的扩展状态和向下调调调。 这种新的、 统一、 第一次审视高维行走的趋同式功能使我们得以进行一种方向的模拟飞行。