This paper establishes bounds on the performance of empirical risk minimization for large-dimensional linear regression. We generalize existing results by allowing the data to be dependent and heavy-tailed. The analysis covers both the cases of identically and heterogeneously distributed observations. Our analysis is nonparametric in the sense that the relationship between the regressand and the regressors is not specified. The main results of this paper show that the empirical risk minimizer achieves the optimal performance (up to a logarithmic factor) in a dependent data setting.
翻译:本文为大维线性回归最小化实验风险的性能设定了界限。 我们通过允许数据依附和重尾细化来概括现有结果。 分析涵盖相同和不同分布的观测情况。 我们的分析是非对称的, 因为它没有具体说明递减和递减者之间的关系。 本文的主要结果表明, 实验风险最小化者在依赖性数据设置中实现了最佳性能( 直至对数系数 )。