Private decision tree evaluation (PDTE) allows a decision tree holder to run a secure protocol with a feature provider. By running the protocol, the feature provider will learn a classification result. Nothing more is revealed to either party. In most existing PDTE protocols, the required communication grows exponentially with the tree's depth $d$, which is highly inefficient for large trees. This shortcoming motivated us to design a sublinear PDTE protocol with $O(d)$ communication complexity. The core of our construction is a shared oblivious selection (SOS) functionality, allowing two parties to perform a secret-shared oblivious read operation from an array. We provide two SOS protocols, both of which achieve sublinear communication and propose optimizations to further improve their efficiency. Our sublinear PDTE protocol is based on the proposed SOS functionality and we prove its security under a semi-honest adversary. We compare our protocol with the state-of-the-art, in terms of communication and computation, under various network settings. The performance evaluation shows that our protocol is practical and more scalable over large trees than existing solutions.
翻译:私人决策树评估( PDTE) 允许决策树持有者与功能提供者执行安全协议。 通过运行协议, 功能提供者将学习一个分类结果。 没有向任何一方透露更多信息。 在大多数现有的 PDTE 协议中, 所需的通信会随着树的深度而成倍增长, 这对于大树来说效率极低。 这个缺陷促使我们设计一个子线性PDTE协议, 使用$O(d) $(d) 的通信复杂度。 我们的构建核心是一个共同的盲目选择功能, 允许双方从一个阵列中进行秘密共享的盲目阅读操作。 我们提供了两个 SOS 协议, 两者都实现了子线性通信, 并提出优化, 以进一步提高它们的效率。 我们的子线性 PDTE 协议以提议的SOS 功能为基础, 我们证明它在半诚实的对手下的安全性。 我们比较我们的协议, 在不同网络设置下, 通信和计算方面, 与最先进的协议, 比较我们的协议。 性能评估显示我们的协议是实用的, 并且比现有解决方案更能超过大树。