This paper aims to improve the path quality and computational efficiency of kinodynamic planners used for vehicular systems. It proposes a learning framework for identifying promising controls during the expansion process of sampling-based motion planners for systems with dynamics. Offline, the learning process is trained to return the highest-quality control that reaches a local goal state (i.e., a waypoint) in the absence of obstacles from an input difference vector between its current state and a local goal state. The data generation scheme provides bounds on the target dispersion and uses state space pruning to ensure high-quality controls. By focusing on the system's dynamics, this process is data efficient and takes place once for a dynamical system, so that it can be used for different environments with modular expansion functions. This work integrates the proposed learning process with a) an exploratory expansion function that generates waypoints with biased coverage over the reachable space, and b) proposes an exploitative expansion function for mobile robots, which generates waypoints using medial axis information. This paper evaluates the learning process and the corresponding planners for a first and second-order differential drive systems. The results show that the proposed integration of learning and planning can produce better quality paths than kinodynamic planning with random controls in fewer iterations and computation time.
翻译:本文旨在改进用于车辆系统的动力动力学规划者的道路质量和计算效率,其中提出一个学习框架,用以在有动态系统的抽样运动规划者扩展过程中确定有希望的控制措施。离线后,学习过程经过培训,返回达到当地目标状态的最高质量控制(即路点),因为目前状态和地方目标状态之间输入差异不存在障碍。数据生成计划提供了目标分散的界限,并使用州空间运行线以确保高质量的控制。通过侧重于系统的动态,这一过程是数据效率高的,并一次性用于动态系统,以便能够用于模块扩展功能的不同环境。这项工作将拟议的学习进程与a)探索性扩展功能相结合,产生对可达空间覆盖有偏差的路径,并(b)提出移动机器人的剥削性扩展功能,利用介质轴信息生成路点。本文评估了第一和第二级差异驱动系统的学习进程和相应的规划者,从而能够将数据高效地用于具有模块扩展功能的不同环境,从而将其用于模块扩展功能的不同环境。这项工作将拟议的学习进程与一个探索性扩展功能功能结合起来,从而产生对可达空间进行有偏差的路径的学习和计算。 论文评估了比随机感动性规划的频率更短的路径。