A surge of interest in Graph Convolutional Networks (GCN) has produced thousands of GCN variants, with hundreds introduced every year. In contrast, many GCN models re-use only a handful of benchmark datasets as many graphs of interest, such as social or commercial networks, are proprietary. We propose a new graph generation problem to enable generating a diverse set of benchmark graphs for GCNs following the distribution of a source graph -- possibly proprietary -- with three requirements: 1) benchmark effectiveness as a substitute for the source graph for GCN research, 2) scalability to process large-scale real-world graphs, and 3) a privacy guarantee for end-users. With a novel graph encoding scheme, we reframe large-scale graph generation problem into medium-length sequence generation problem and apply the strong generation power of the Transformer architecture to the graph domain. Extensive experiments across a vast body of graph generative models show that our model can successfully generate benchmark graphs with the realistic graph structure, node attributes, and node labels required to benchmark GCNs on node classification tasks.


翻译:对图表革命网络(GCN)的兴趣激增产生了数千个GCN变量,每年引入数百个。相反,许多GCN模型只重新使用少数基准数据集,因为许多感兴趣的图表,如社会或商业网络,都是专有的。我们提出一个新的图形生成问题,以便在分发源图(可能是专有的)之后,为GCN生成一套不同的基准图表,有三个要求:(1)基准有效性,以替代GCN研究源图,(2)处理大规模真实世界图表的可缩放性,(3)最终用户的隐私保障。我们用新的图形编码办法,将大比例图形生成问题重新设置为中等时间序列生成问题,并将变异器结构的强大生成力应用于图形领域。在大量图表基因缩写模型上进行的广泛实验表明,我们的模型能够成功地生成基准图表,用现实的图形结构、节点属性和节点标签来为GCN在节点分类任务上的基准。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
11+阅读 · 2018年10月17日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员