In this paper, we propose a Bayesian spectral deconvolution considering the properties of peaks in different energy domains. Bayesian spectral deconvolution regresses spectral data into the sum of multiple basis functions. Conventional methods use a model that treats all peaks equally. However, in X-ray absorption near edge structure (XANES) spectra, the properties of the peaks differ depending on the energy domain, and the specific energy domain of XANES is essential in condensed matter physics. We propose a model that discriminates between the low- and high-energy domains. We also propose a prior distribution that reflects the physical properties. We compare the conventional and proposed models in terms of computational efficiency, estimation accuracy, and model evidence. We demonstrate that our method effectively estimates the number of transition components in the important energy domain, on which the material scientists focus for mapping the electronic transition analysis by first-principles simulation.
翻译:在本文中,我们建议进行贝耶斯光谱分解,以考虑不同能源领域峰值的特性。贝耶斯光谱分解后,将光谱数据递减成多个基函数的总和。常规方法使用一种对所有峰值一视同仁的模式。然而,在X射线吸收近边缘结构(XANES)光谱中,峰值的特性因能源领域不同而不同,而XANES的具体能量领域在浓缩物质物理学中必不可少。我们提出了一个区分低能和高能领域的模型。我们还提出了一个反映物理特性的先前分布方案。我们比较了常规模型和拟议模型的计算效率、估计准确性和模型证据。我们证明,我们的方法有效地估计了重要能源领域的过渡组成部分的数量,而材料科学家则侧重于通过第一原则模拟对电子转换分析进行绘图。