In this work is provided a numerical study of a diffusion problem involving a second order term on the domain boundary (the Laplace-Beltrami operator) referred to as the \textit{Ventcel problem}.A variational formulation of the Ventcel problem is studied, leading to a finite element discretization.The focus is on the resort to high order curved meshes for the discretization of the physical domain.The computational errors are investigated both in terms of geometrical error and of finite element approximation error, respectively associated to the mesh degree $r\ge 1$ and to the finite element degree $k\ge 1$. The numerical experiments we led allow us to formulate a conjecture on the \textit{a priori} error estimates depending on the two parameters $r$ and $k$. In addition, these error estimates rely on the definition of a functional \textit{lift} with adapted properties on the boundary to move numerical solutions defined on the computational domain to the physical one.
翻译:在这项工作中,对域边界上第二个顺序术语(Laplace-Beltrami运算符)称为\ textit{Ventcel problem}. 的传播问题进行了数字研究。正在研究文特塞尔问题的变式配方,导致一个有限的元素分解。 重点是为物理域的分解而采用高顺序弯曲的中间线。 计算错误既涉及几何错误,也涉及有限元素近似差错,分别与网状度$r\ge 1美元和有限元素度$k\ge 1美元有关。 我们引导的数字实验允许我们根据两个参数来拟订关于\ textit{a pri} 错误的估计。 此外,这些错误估计取决于功能 leftit{lift} 的定义, 边界上有调整后的特性, 将计算域上确定的数字解决方案移到物理区。