In private information delivery (PID) problem, there are $K$ messages stored across $N$ servers, each capable of storing $M$ messages and a user. Servers want to convey one of the $K$ messages to the user without revealing the identity (index) of the message conveyed. The capacity of PID problem is defined as maximum number of bits of the desired message that can be conveyed privately, per bit of total communication, to the user. For the restricted case of replicated systems, where coded messages or splitting one message into several servers is not allowed, the capacity of PID has been characterized by Hua Sun in "Private Information Delivery, IEEE Transactions on Information Theory, December 2020" in terms of $K, N$ and $M.$ In this paper, we study the problem of PID with coded storage at the servers. For a class of problems called {\it bi-regular PID} we characterize the capacity for $N=K/M$ and for $N>K/M$ we provide an achievable scheme. In both the cases the rates achieved are more than the rates achievable with the replicated systems.
翻译:在私人信息传输(PID)问题中,有1美元的信息存储在1美元服务器上,每个服务器都能够存储1美元的信息和一个用户。服务器希望在不透露所传递信息的身份(索引)的情况下向用户发送其中1美元的信息。PID问题的能力被定义为可以私下向用户以私人方式发送的最大部分信息,按通信总量的百分位表示。对于受限制的复制系统,不允许加密信息或将一条信息分解到多个服务器的情况,PID的能力在“私人信息传输,IEE交易信息理论,2020年12月”中以Hua Sun为特征,用K美元、N$和$M来表示。在本文件中,我们用服务器的编码存储方式研究PID问题。对于被称为 ~ Tit 双常规PID的一类问题,我们描述的是$=K/M$的能力和$N>K/M$我们提供一种可实现的方案。在这两种情况下,实现的费率都超过了复制系统所能达到的费率。