Classification on smartphone-captured chest X-ray (CXR) photos to detect pathologies is challenging due to the projective transformation caused by the non-ideal camera position. Recently, various rectification methods have been proposed for different photo rectification tasks such as document photos, license plate photos, etc. Unfortunately, we found that none of them is suitable for CXR photos, due to their specific transformation type, image appearance, annotation type, etc. In this paper, we propose an innovative deep learning-based Projective Transformation Rectification Network (PTRN) to automatically rectify CXR photos by predicting the projective transformation matrix. To the best of our knowledge, it is the first work to predict the projective transformation matrix as the learning goal for photo rectification. Additionally, to avoid the expensive collection of natural data, synthetic CXR photos are generated under the consideration of natural perturbations, extra screens, etc. We evaluate the proposed approach in the CheXphoto smartphone-captured CXR photos classification competition hosted by the Stanford University Machine Learning Group, our approach won first place with a huge performance improvement (ours 0.850, second-best 0.762, in AUC). A deeper study demonstrates that the use of PTRN successfully achieves the classification performance on the spatially transformed CXR photos to the same level as on the high-quality digital CXR images, indicating PTRN can eliminate all negative impacts of projective transformation on the CXR photos.


翻译:由于非理想摄像头位置造成的投影变异,对智能手机取胸X光(CXR)照片进行分类以发现病理学,由于非理想摄像头位置造成的投影变异,这种分类具有挑战性。最近,为文件照片、车牌照片等不同照片校正任务提出了各种校正方法。 不幸的是,我们发现,由于CXR照片的具体变异类型、图像外观、批注类型等,这些照片都不适合CXR照片。 在本文件中,我们建议建立一个创新的深层次学习基于学习的投影变异变异变异网络(PTRN),通过预测投影变异矩阵图表自动纠正CXR照片变异。根据我们的知识,这是预测投影变模型变矩阵作为光学习目标的首次工作。此外,为了避免收集昂贵的自然数据,在考虑自然变形、图像外观、屏幕等的情况下,合成CXR照片的生成了CX照片。我们评估了CheXphopto智能投影 CX照片变异网络的拟议方法,通过预测预测投影变异矩阵变异模型组的CR照片分类竞争,我们的方法在AX图像上赢得了最深刻变异的成绩。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
15+阅读 · 2021年7月14日
Arxiv
16+阅读 · 2021年1月27日
Arxiv
20+阅读 · 2018年1月17日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员